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1 Introduction

Climate is essentially weather patterns over a long timescale, such as decades or centuries
compared to weather events over several hours or days. Therefore, statistics and data
science play an important role in climate data analysis, such as in the likelihood that
weather patterns will be in a certain way after some amount of time or the probability
that Earth’s climate conditions were within a certain range of values a specific number of
centuries ago. In the past few decades, climate science has begun focusing on researching
anthropogenic climate change, i.e. climate change caused by human activity, as that is
one of the top pressing contemporary issues. Thus, it is important to understand the
drivers of climate change and how those are studied and modeled by climate scientists.

The interdisciplinary nature of climate data science means it is important to have
the domain knowledge needed to understand the data being worked with and what to
look for when conducting analyses. Asking the right questions is vital for uncovering
essential insights and having background knowledge of the field will help explain what
could be the causes and effects of those trends. There are many components to climate
data science for the purposes of understanding the fundamentals of climate science and
modern climate change.

Scientists know that climate change is occurring by observing long-term trends in
physical variables such as atmospheric concentrations of greenhouse gasses, changes in
precipitation patterns, and calculating the atmospheric radiative balance. By analyzing
these observed trends, the drivers behind climate change as well as its impacts can be
understood. Figure 1 shows the correlation between increasing atmospheric concentra-
tions of carbon dioxide in parts per million and the resulting increase in average global
temperature in degrees Fahrenheit. The visualization easily conveys the relationship
between the two variables and it is clear that more carbon dioxide in the atmosphere is
leading to global warming. This correlation is explained by the physical properties of
the radiative balance of the Earth which is explained in further detail in the “climate
models section of this chapter. While this is a simple example, it is a good introduction
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Figure 1: Relationship between global temperature and carbon dioxide concentrations
(Karl et al., 2009).

to the kind of analyses needed to study and understand the fundamentals of climate
science and climate change.

This chapter will aim to cover the fundamentals of climate science, relevant data
sources and the uses of the data, typical key variables analyzed, common statistical
methods, and the role of climate models, such as informing the Intergovernmental Panel
on Climate Change (IPCC) or NASA reports on climate change.
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2 The Physics of Climate Change

The greenhouse gas effect leading to global warming is explained by the concept of
radiative forcing. Radiative forcing is important because the imbalance between the
inflow of energy to Earth and the outflow of energy from Earth due to greenhouse
gasses absorbing some of that outflow back into the Earth system results in net heating.
Figure 2 illustrates Earth’s energy balance and the imbalance that occurs due to higher
greenhouse gas concentrations in the atmosphere. This radiative forcing also provides
the basis for the most fundamental one-dimensional climate models called energy balance
models. For those interested, a more in-detail explanation of the intricacies of Earth’s
radiative balance is provided in Chapter 7 of the IPCC’s Sixth Assessment Report.

Figure 2: Diagram depicting how radiative forcing occurs (Source: USDA Climate Hubs).

There are numerous gasses in the atmosphere that can contribute to the net energy
imbalance, but the focus is on greenhouse gasses that remain in the atmosphere for a
long time and therefore are difficult to remove, as well as leading to long-lasting and
compounding effects over time. Carbon dioxide is the most well-known due to its long
atmospheric lifetime on a timescale of centuries and that high concentrations are emitted
through human activity. While trees are often discussed as a way to sequester carbon
dioxide, that is not a permanent solution due to how carbon cycles between the bio-
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sphere (e.g., trees), lithosphere (e.g., fossil fuel deposits), and the atmosphere, referred
to as ‘reservoirs’ of carbon. The carbon emitted by humans comes from the lithosphere
through oil, gas, and other fossil fuel deposits that are extracted. Carbon in the litho-
sphere comes from organic matter that is very slowly converted to fossil fuels that then
remain underground for thousands of years, making the lithosphere a long-term reservoir
of carbon. Humans extract these fossil fuel deposits and burn the fossil fuels, releasing
this carbon into the atmosphere. Carbon does not easily return to the lithosphere from
the atmosphere and instead tends to cycle quickly between the biosphere and atmosphere
through plants breathing in carbon dioxide and releasing it back after death. Further-
more, the release of carbon into the atmosphere by plants is rising due to increasingly
common and severe wildfires. This means that the carbon humans are releasing from the
lithosphere in just these last few decades will not return to the lithosphere naturally for
thousands of years. This is why even if all anthropogenic carbon emissions were stopped
today, global warming would continue due to the cumulative effect of all the carbon that
has been released by humans until today. Besides the biosphere and lithosphere, there
is also the uptake of carbon dioxide by the oceans that deserves discussion here.

Figure 3: The carbon cycle shown along with the biosphere, atmosphere, lithosphere,
and ocean reservoirs of carbon (Source: NOAA).

Current estimates put how much of anthropogenic carbon dioxide emissions the
oceans absorb at about 25% to 30%. This emphasizes the oceans as a significant con-
tributor to mitigating the impacts of these emissions and slowing down global climate
change, but this also results in the gradual acidification of the oceans, leading to hos-
tile environmental conditions for marine life. The chemistry of how carbon dioxide is
absorbed by the oceans is as follows:

CO2 ←→ CO2 ·H2O
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CO2 ·H2O ←→ H+ +HCO−
3

HCO−
3 ←→ H+ + CO2−

3

Most of the dissolved CO2 is in the form of HCO−
3 , meaning the amount of atmo-

spheric carbon dioxide the ocean can continue to take up is determined by the overall
equilibrium:

CO2 + CO2−
3 ←→ 2HCO−

3

Essentially, as the oceans take up more carbon dioxide, they become more acidic,
acting as a feedback loop leading to a reduced capacity to continue absorbing carbon
dioxide. This means that while they are a significant buffer against the accumulation of
carbon dioxide in the atmosphere today, even that cannot be relied on as a long-term
solution.

Figure 4: The flow of carbon dioxide between the ocean and atmosphere per year. Blue
areas indicate where more carbon dioxide enters the ocean than leaves it, and make up
most of the area depicted (Source: ESA).

Another important feedback loop in climate change is the melting of ice, snow, and
permafrost. Ice and snow are important for increasing the albedo, or reflectivity, of
the Earth’s surface, counteracting the greenhouse gas effect by reflecting more received
energy back into space. As ice and snow melt, the albedo of the surface decreases and
more energy is absorbed by Earth. This is particularly insidious when looking at how
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glaciers melt. First, a warmer spot starts to melt, resulting in water pooling. This water
is darker than the ice around it, leading to even more energy being absorbed and even
more heating taking place, accelerating the melting. This process continues until the
glacier breaks apart, meaning that even a small amount of melting at the beginning can
result in significant losses of ice and reflectivity later on. The melting of permafrost has
another detrimental impact on climate change: its loss releases greenhouse gasses such
as methane that were stored within the permafrost. Therefore, permafrost is not only
important for biodiversity but also for acting as a reservoir of greenhouse gasses that
would otherwise contribute to global warming.

Figure 5: The variation of the mass of ice in Antarctica since 2002, measured by NASA’s
GRACE satellites (Source: NASA).

Climate change is just one of nine planetary boundaries, which define nine critical
thresholds within which humanity can safely operate to maintain a stable Earth system.
Alarmingly, six of these nine boundaries have already been crossed (see Figure 6), sig-
naling that human activities are destabilizing key environmental processes beyond the
carbon cycle. Other planetary boundaries include biosphere integrity (biodiversity loss),
land-system change (deforestation), biogeochemical flows (nitrogen and phosphorus cy-
cles), novel entities (chemical pollution), and freshwater use. Each boundary breach
represents a systemic crisis, and they are deeply interlinked. For instance, deforestation
not only contributes to biodiversity loss but also amplifies climate change by reducing
carbon storage. Similarly, chemical pollution affects freshwater ecosystems, exacerbating
biodiversity decline. The interconnectedness of these boundaries means that exceeding
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one often pushes others toward their limits, amplifying global risks. Urgent, systemic
action is required to address these intertwined crises and restore planetary balance, as
exceeding multiple boundaries increases the likelihood of triggering irreversible changes
in the Earth system.

Figure 6: Planetary boundaries crossed over time from 2009 to 2023 (Source: Stockholm
Resilience Centre).

2.1 Further Reading

� How much carbon dioxide the oceans take up: https://news-oceanacidificat
ion-icc.org/2024/11/11/how-we-discovered-that-the-oceans-surface-a

bsorbs-much-more-carbon-dioxide-than-previously-thought/

� Further explanation of the chemistry of the oceans’ uptake of carbon dioxide:
https://www.pmel.noaa.gov/co2/files/dickson_thecarbondioxidesystem

inseawater_equilibriumchemistryandmeasurementspp17-40.pdf

� More climate feedback loops: https://earthhow.com/climate-feedback-loops

� Watch how glaciers melt: https://www.nasa.gov/science-research/earth-s
cience/the-anatomy-of-glacial-ice-loss/
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3 Key Variables Analyzed

In climate data science, key variables analyzed are crucial for understanding and pre-
dicting climate patterns, assessing impacts, and developing mitigation strategies. These
variables span multiple domains such as atmospheric, oceanic, terrestrial, and socioeco-
nomic factors. In this section, we summarize some of the most important categories and
specific variables analyzed in climate data science.

3.1 Atmospheric Variables

Temperature is one of the most critical indicators of climate change. Climate scien-
tists track global, regional, and local temperature trends over time, focusing on surface
temperatures, and atmospheric temperatures at various altitudes.

Figure 7: Global Temperature Change over Time Relative to Average of 1961-2010
(Source: Show Your Stripes).

Climate Change is caused by the increase of greenhouse gas (GHG) concentrations.
Thus, the levels of gasses like carbon dioxide (CO2), methane (CH4), and nitrous oxide
(N2O) are central to climate models, as these gasses trap heat and contribute to global
warming. GHG concentrations are typically measured in parts per million (ppm) using
spectroscopy, which identifies each type of gas molecule absorbing a unique set of light
wavelengths.

Other atmospheric variables include precipitation and wind patterns, as well as hu-
midity. Rainfall and snow patterns are studied to understand shifts in hydrological
cycles, including changes in droughts and flood occurrences. Analyzing wind speeds and
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Figure 8: Global Atmospheric Concentrations of Carbon Dioxide Over Time (US EPA,
2016).

directions can provide insights into changes in storm activity, jet streams, and circu-
lation patterns. Finally humidity is important, because as temperature rises, the air’s
capacity to hold moisture increases, influencing humidity levels. This can affect weather
patterns, cloud formation, and precipitation.

The climate crisis is altering weather patterns and causes more frequent and extreme
weather events, such as heatwaves, storms, hurricanes, floods and droughts. Soil mois-
ture data is vital for understanding drought conditions, agricultural productivity, and
water resource management. We are also interested in wildfire frequency and intensity,
because as temperatures rise, wildfires are becoming more frequent and severe, affecting
ecosystems and releasing stored carbon into the atmosphere. By analyzing trends in
these events, scientists can assess future risks and inform strategies for mitigation and
adaptation. Additionally, the links between changing precipitation patterns, rising sea
levels, and temperature fluctuations make this data essential for evaluating the impacts
on food security, infrastructure, and human health.
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3.2 Oceanic Variables

Sea Level Rise is a central variable in climate data science. Monitoring sea level is critical
for assessing the impacts of melting glaciers and polar ice caps, and thermal expansion
of water due to warming. This is key for predicting coastal flooding and erosion risks.

Projections under different scenarios based on the assessment presented in the IPCC
Sixth Assessment Report are available in the NASA sea level projection tool (see code
example). Assuming intermediate GHG emissions (SSP2-4.5, CO2 emissions around
current levels until 2050, then falling but not reaching net zero by 2100), we can expect
a sea-level rise of between 43 and 76 cm (17 - 30 in.), although the exact amount depends
on several factors, such as ice sheet dynamics and regional variations.

Example: Variation in Sea Level Rise

Example code available at: https://github.com/jmanitz/climate_data_book/b
lob/main/sea-level-rise/sea-level-map.md

In this example, we explore the geographical variation in sea-level rise at different
locations world-wide. We use data from the NASA sea level projection tool at https:
//sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool.

# Load sea-level data

dt <- read.csv("sea-level-projection-data.csv", skip=3)

# Add geo location to the dataset

dt[c("lon","lat")] <- ggmap::geocode(dt$location)

## i <https://maps.googleapis.com/maps/api/geocode/json?address=New+York&key=xxx>

## i <https://maps.googleapis.com/maps/api/geocode/json?address=Miami&key=xxx>

## . . .

Next we plot the information on the world map with point size proportional to local
sea-level rise projection

# World map data

world <- map_data("world")

ggplot() +

geom_polygon(data = world, aes(long, lat, group = group),

color = "darkgrey", fill = "lightgrey", linewidth=0.1) +

geom_point(data=dt, aes(lon, lat, size=sea_level_proj), color="#50A7BA") +

geom_text(data=dt, aes(lon, lat, label=location), hjust=1, vjust=1, size=3) +

theme_void() + labs(size = "Sea-level rise\n2100 (in cm)")
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Other relevant oceanic variables include:

� Sea Surface Temperatures (SST): Rising SSTs are closely linked to stronger storms
and hurricanes, coral bleaching, and changing marine ecosystems. SSTs also play
a role in ocean circulation patterns.

� Ocean Currents: Ocean circulation, including thermohaline circulation, influences
global climate systems. Changes in currents like the Gulf Stream can impact
weather patterns globally.

� Ocean Acidification: Increasing CO2 levels lead to more acidic oceans, which harms
marine life, particularly organisms that rely on calcium carbonate for their shells
or skeletons.

3.3 Cryospheric Variables

The cryosphere is an umbrella term for those portions of Earth’s surface where water is
in solid form. This includes sea ice, ice on lakes or rivers, snow, glaciers, ice caps, ice
sheets, and frozen ground. Measuring their magnitude is crucial to inform important
feedback loops. For example, the size and mass of glaciers and polar ice sheets (in
Greenland and Antarctica) are crucial for understanding long-term sea level rise and
albedo effects, where melting ice reduces the Earth’s reflectivity and accelerates warming.
Tracking seasonal snow cover helps assess changes in freshwater availability, impacts
on ecosystems, and albedo changes. Finally, the thawing of permafrost releases stored
methane and carbon dioxide, amplifying greenhouse gas concentrations and contributing
to further warming. More details will be provided in the climate models section at the
end of this chapter.
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3.4 Terrestrial Variables

Analyzing changes in forests, grasslands, and urbanization helps assess carbon sinks,
habitat loss, and changes in the carbon cycle which are important as natural methods
of sequestering carbon dioxide from the atmosphere. Specifically, the Normalized Differ-
ence Vegetation Index (NDVI) is a widely-used metric to quantify the health and density
of vegetation using sensor data. It is calculated from spectrometric data at two specific
bands: red and near-infrared. The spectrometric data is usually sourced from remote
sensors, such as satellites. An open-access dashboard is Global Forest Watch (global-
forestwatch.org). It is an online platform that provides data and tools for monitoring
deforestation, forest degradation, and reforestation efforts. By harnessing cutting-edge
technology, it allows anyone to access near real-time information about where and how
land-use and forests are changing around the world. The project supports governments,
businesses, researchers, and activists to make informed decisions on conservation strate-
gies, policy decisions, and sustainable land management.

Figure 9: Satellite imagery of the vegetation cover in Kurnool District shows an increase
in healthy vegetation, measured in NDVI, after the adoption of a watershed program
encouraging the implementation of soil and water conservation activities (Naidu, Tiwari,
and Rao, 2021).
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3.5 Biodiversity and Ecosystem Health

In climate data science, biodiversity and ecosystem health reveal the broader ecological
impacts of the climate crisis. For example, species distribution is a key factor, as warming
temperatures and shifting habitats force plants and animals to migrate or adapt to new
conditions. Tracking changes in species ranges provides insight into how ecosystems are
being disrupted.

Furthermore, scientists study periodic events in biological life cycles and how these
are influenced by seasonal and interannual variations in climate, as well as habitat fac-
tors. This field is called phenology and includes the timing of biological events such as
flowering or animal migration, also shifts in response to changing climate conditions,
serving as a clear indicator of environmental changes. Erratic weather patterns caused
by the climate crisis disturb balanced ecosystems. For example, plants may bloom before
butterflies emerge to pollinate them, or caterpillars may emerge before migratory birds
arrive to feed them to their young (Kellermann, 2018).

Additionally, the spread of vector-borne diseases is a growing concern, as the climate
crisis alters the habitats of disease vectors like mosquitoes, expanding the risk of diseases
such as malaria, dengue, and Lyme disease to new, previously unaffected regions.

3.6 Socioeconomic Variables

Tracking carbon emissions from industrial, transportation, and residential sources is
central to understanding the drivers of the climate crisis. By monitoring these emissions,
climate data scientists can evaluate the effectiveness of mitigation policies, such as carbon
pricing and the transition to renewable energy. Changes in emission patterns reveal how
successfully nations and regions are reducing their carbon footprints, allowing for more
targeted policy interventions. Urban areas, which are responsible for the majority of
global carbon emissions, are key targets for emission reduction strategies. For example,
Google’s Environmental Insights Explorer (insights.sustainability.google) utilizes remote
sensing data and satellite imagery to track emissions from transportation, industry, and
buildings in order to estimate carbon footprints for cities globally.

Socioeconomic variables also play a pivotal role in climate data science, because im-
pacts of the climate crisis often intersect with environmental and social justice issues.
Socioeconomic factors, including population density, income levels, and access to re-
sources, are essential for evaluating how communities are affected by climate impacts
and their capacity to adapt. Low-income and marginalized communities often face dis-
proportionate risks from the climate crisis due to limited access to infrastructure and
resources. These variables are critical for assessing vulnerability and resilience, informing
climate justice initiatives aimed at protecting the most vulnerable populations from the
adverse effects of extreme weather, rising sea levels, and other climate-driven challenges.

Low-income and marginalized communities (also called environmental justice com-
munities) are more likely to live in urban heat islands, neighborhoods where temper-
atures are significantly higher than surrounding regions due to poor urban planning,
fewer trees and green spaces. As a result, residents face greater risks of heat-related
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illnesses and fatalities, especially during heatwaves exacerbated by the climate crisis.
Vulnerable communities are also more likely to be exposed to higher levels of pollution
as they are often located near polluting industries such as factories, refineries, and land-
fills. This proximity exposes residents to higher levels of air, water, and soil pollution,
which can lead to increased rates of respiratory illnesses, cancer, and other health prob-
lems. This is in particular damaging since polluted air traps more heat and thus worsen
during extreme heat events. In addition, these vulnerable populations often live in areas
more prone to flooding, hurricanes, or heatwaves and may lack adequate infrastructure
or financial means to recover from climate-related disasters. For example, stormwater
overflow events release untreated sewage and wastewater into nearby water bodies and
occur when combined sewer systems are overwhelmed by heavy precipitation. The EPA
estimates that more than 65% of active CSO outfalls are in Census block groups with
high concentrations of people of color, low income, and other demographic indicators of
vulnerability (US GAO, 2023).

Analyzing these variables allows climate data scientists to build comprehensive mod-
els, identify trends, and predict future climate scenarios. This understanding is critical
for guiding mitigation and adaptation strategies, helping policymakers and society pre-
pare for the impacts of climate change. In the next section, we describe statistical con-
cepts for common analysis techniques. Afterwards, we will explain how climate models
work and the role they play in climate data science.
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4 Statistical Methodological Concepts for Analyzing Cli-
mate Data

Statistical methodologies form the backbone of climate data analysis, providing the tools
needed to understand complex environmental patterns, make predictions, and inform
policy and market decisions. Climate data is vast and diverse as introduced in the
previous section. In this section, we describe several key statistical methodologies central
to analyzing these datasets.

4.1 Time Series Analysis

Climate data is typically recorded over long periods, making time series analysis a foun-
dational approach. Time series methods analyze data points collected sequentially over
time, allowing researchers to detect trends, seasonal patterns, and cycles. Time series
analysis is essential for identifying long-term trends in temperature, sea level rise, and
extreme weather events, as well as projecting future changes.

Generally, time series data is modeled as a stochastic process Yt. For exploratory
analysis, time series can be decomposed into the sum of three components representing
trend Tt, seasonality St and white noise error t: Yt = St + Tt + εt.

Scientists are also interested in autocorrelation, i.e. correlation of the time series
with lags of itself, which is commonly used to determine whether the time series is sta-
tionary. Stationary time series do not have an overall trend, no relevant seasonal effect
and their variance does not increase over time. Many statistical techniques require sta-
tionarity to make valid inferences and reliable predictions, e.g ARMA models consisting
of autoregression (AR) and moving average (MA) to smooth out the data, reduce noise
and improve forecast accuracy. For non-stationary time series autoregressive integrated
moving average (ARIMA) models can help to forecast future values. The ”integrated”
(I) part indicates that the data values have been replaced with the difference between
each value and the previous value. Periodic or seasonal components in the ARIMA
framework can be eliminated by the seasonal differencing.

Time series analysis is also used for detecting unexpected values and anomalies that
deviate significantly from the regular pattern in the time series. These can indicate
errors, rare events, or significant changes. For example, statistical techniques like Z-
scores or setting confidence intervals can highlight values that deviate beyond expected
limits, marking them as anomalies.

Example: Average Temperature in Boston, MA

Example code available at https://github.com/jmanitz/climate_data_book/b
lob/main/temp_boston/temp241011.md

In this example, we study the annual average temperature in Boston MA, which
has been recorded by NOAA since 1872. We decompose the time series into trend,
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seasonality and random error term.

load("TempBostonTS.RData") # NOAA weather data, dtM

ts\_decomposed <- dtM %>% select(meanTemp) %>%

# Create time-series objects with freq 12 => Monthly data.

stats::ts(frequency = 12, start = c(1872, 1)) %>%

# Missing value imputation by Kalman smoothing

imputeTS::na_kalman() %>%

# Decompose a time series into seasonal, trend and error

decompose(type = "additive")

plot(ts_decomposed)

We look in more detail into the trend component of the time series by plotting the
mean temperature before 1950 as reference and adding the locally estimated smoothed
trend to visualize the rising temperatures over time.

# Calculate mean Temperature before 1950

ref1950 = dtM %>% filter(Year<1950) %>%

summarize(mean(meanTemp, na.rm=TRUE)) %>% pull()
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# Plot time series trend component

data.frame(trend=ts_decomposed$trend, date=time(ts_decomposed$x)) %>%

ggplot(aes(x=date, y=trend)) + geom_line() +

# Add reference: mean temperature before 1950

geom_hline(aes(color = "Average temperatue\nbefore 1950",

yintercept = ref1950), size = 1) +

# Add loess smoothed trend

stat_smooth(aes(color = "Loess smoothing"), method = "loess", se=FALSE) +

scale_x_continuous(breaks=seq(1850, 2025, 25)) +

labs(x="year", y="Annual Temperature (in F)",

title="Temperature Trend in Boston, MA", color="") +

theme_minimal() + theme(legend.position = c(.15,.85))

4.2 Spatial Analysis and Geostatistics

Spatial analysis techniques are critical in climate science due to the geographic nature of
environmental data, which includes variables like temperature, rainfall, and vegetation
cover across different locations.

Different data types such as polygon (areal) maps and point pattern data, require
different analysis techniques. Polygon or areal data represent areas, such as adminis-
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trative regions, ecosystems, or climate zones, and are often visualized on maps with
defined boundaries. Point pattern data, on the other hand, represent specific locations
or ”points” where measurements are taken, such as weather stations, pollutant sources,
or species observations. Point data capture localized information and are useful for de-
tecting fine-scale patterns. Both data types complement each other in climate science,
where polygon maps offer a broad perspective on areal trends, and point data provide
precise, localized insights.

Example: Biodiversity Protection Status in Massachusetts

Example code available at https://github.com/jmanitz/code-snippets/blob/m
ain/biodiversity_mass/rprog240926.md

The 30x30 goal is a global conservation initiative aimed at protecting 30% of the
planet’s land and oceans by 2030. In this context, we analyze the proportion of pro-
tected areas in the Commonwealth of Massachusetts.

Data Source: U.S. Geological Survey (USGS) Gap Analysis Project (GAP), 2022,
Protected Areas Database of the United States (PAD-US) 3.0: U.S. Geological Survey
data release, https://doi.org/10.5066/P9Q9LQ4B.

# Read polygon map data

map_dt <- st_read("map_data/PADUS3_0Combined_StateMA.shp") %>% st_drop_geometry()

# Plot GAP status

ggplot(data = map) + geom_sf(aes(fill = GAP_Sts), color="lightgrey") +

scale_fill_viridis(discrete = TRUE) +

theme_minimal() + theme(legend.position = "bottom")
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# helper function to calculates proportion of land in Massachusetts with

# input variable x = area (1 acre = 0.0015625 sq mi); MA area = 10,565 sq.mi

calc_prop <- function(x){ as.numeric(x * 0.0015625 / 10565)[1]*100 }

# Calculate proportion of protected land

map_dt %>% group_by(GAP_Sts) %>%

summarize(pct = sum(GIS_Acres) %>% calc_prop()) %>%

gt() %>% fmt_number("pct")

The analysis shows that in Massachusetts protected areas (GAP 1 + 2 = 5.6%) and
GAP3 = 11.2%, most are under state management. Only GAP 1 and 2 are typically
considered protected from logging and mining, a far cry from the nationwide 30x30
pledge. However, GAP 3 areas are governed under multiple use mandates (e.g., wildlife,
forestry and mining) and may have particular potential to advance biodiversity and
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climate protections more quickly through administrative mechanisms (Rosa and Malcom,
2022).

Kriging and similar geostatistical techniques predict climate variables in unmeasured
areas by using the spatial correlations among nearby measurements, creating continuous
surfaces of temperature, rainfall, or pollution data from discrete observations. Similarly,
spatial autocorrelation analysis quantifies how climate variables are similar or dissimilar
across distances, helping identify trends or hotspots of change.

In climate data science, spatial data is often obtained through remote sensing, a
powerful technique that gathers information about the Earth’s surface without direct
contact, typically using satellites, drones, or aircraft. Examples of datasets can be
found in the climate models section. This technology captures extensive datasets across
multiple spectral bands, enabling researchers to monitor environmental changes over
time and across different locations. Advanced methodologies, including spectral analysis,
machine learning, and change detection, facilitate the processing and interpretation of
this data, allowing for the identification of trends and anomalies. Remote sensing is
particularly valuable for providing real-time, global insights that support environmental
monitoring, disaster response, and resource management efforts. For instance, it plays
a crucial role in tracking deforestation, glacial melt, urban expansion, and variations in
ocean temperatures.

4.3 Extreme Value Theory (EVT)

Extreme weather events, such as hurricanes, heatwaves, and heavy rainfall, are becoming
more frequent and intense due to climate change. A mathematical representation of
extremes, or events with a low probability of occurrence. An extreme weather event is
an occurrence that deviates substantially from typical weather at a specific location and
time of year. Extreme value theory provides a framework for modeling and predicting
the occurrence of rare events, helping researchers estimate the probability, frequency
and magnitude of future extremes.

Analysis of extreme weather is made more difficult by the fact that extreme events
are, by definition, rare, and therefore reliable data is limited. Thus, analyzing these
rare, high-impact events requires statistical approaches that focus on the extremes rather
than the average. In other words, we are focusing on the tail of standard distributional
assumptions. The Generalized extreme value (GEV) method utilizes a distribution of
standardized maxima

G(z) = exp

[
−
{
1 + ξ

(
z − µ

σ

)}−1/ξ

+

]

with location µ, scale σ, and shape ξ, e.g. Gumbel (ξ → 0), Frechet (ξ > 0), or
Weibull (ξ < 0) distribution. The GEV distribution is used when we are interested in
the most extreme values over a fixed period, like the maximum yearly temperature or
the strongest storm in a decade.
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Another approach, called Generalized Pareto (GP) focuses on the events that exceed
a certain threshold, specifically considers the probability of exceeding a predetermined
threshold

H(x) = 1−
[
1 + ξ

(
x− u

σu

)−1/ξ

+

]

with Exponential (ξ → 0), Pareto (ξ > 0) or Beta (ξ < 0) distribution. In calculating
the model fit, it is useful to determine whether the model distribution remains the same
as time progresses. Figure 10 shows how the probability of the extremes might change in
the future under possible proposed climate scenarios. This change can be incorporated
into the model as a change with respect to time; µ, x, σ, and ξ can be represented as
some sort of function of time.

Figure 10: Effect of a warmer climate on extreme temperature ranges and occurrences
(Field et al., 2012).

4.4 Machine Learning and Predictive Modeling

With the increase in available climate data, machine learning has become an essential
tool in climate science for predictive modeling and pattern recognition. Machine learning
methods complement traditional statistical techniques, especially when handling large
and high-dimensional climate datasets. These methods can be useful for automated ex-
traction of information from images that would otherwise take a lot of manual labor.
Algorithms such as random forests, gradient boosting and Support Vector Machines
(SVMs), can identify complex, nonlinear patterns within large climate datasets, making
them valuable for tasks like forecasting temperatures, rainfall, or even crop yields. Deep
learning techniques, particularly Convolutional Neural Networks (CNNs), are also em-
ployed for analyzing spatial data, such as satellite imagery, to monitor deforestation, ice
melt, or land-use changes.

Understanding basic concepts is essential for developing accurate and reliable models,
especially in fields like climate data science. Supervised and unsupervised learning rep-
resent two main approaches to model training, each suited for different types of tasks. In
supervised learning, models are trained on labeled data, meaning each training example
has an input and a known output.

Given the complexity of the models, one key concept is the division of data into
training and test sets. The training data is used to build and ”teach” the model, helping
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it learn patterns within the dataset, while the test data is used to evaluate the model’s
performance on unseen data, giving an indication of its generalization ability. Cross-
validation is a technique used to improve model reliability by dividing the dataset into
multiple subsets, allowing the model to be trained and tested on different combinations
of data, which reduces overfitting and ensures that performance metrics are not biased
by a single train-test split. These concepts form the backbone of reliable model building,
ensuring that results are both valid and applicable in real-world climate scenarios.

Another foundational concept is distinguishing between regression and classification.
In regression tasks, models predict continuous outcomes, such as temperature changes or
CO2 levels, where errors are often measured by metrics like mean squared error (MSE).
In classification tasks, the goal is to predict discrete categories, such as whether an area
is forested or deforested; here, errors are tracked by classification accuracy, precision,
or recall. Error metrics like MSE (Mean Squared Error) and classification accuracy are
ways to measure how well a model’s predictions match reality.

In contrast, unsupervised learning is used with unlabeled data, where the goal is to
find patterns, structure, or relationships within the data without specific output labels.
This approach is valuable for tasks like clustering regions with similar climate patterns
or grouping seasons with similar temperature profiles. Unsupervised learning algorithms
can reveal hidden structures within large climate datasets, which can provide new in-
sights or help define further supervised learning tasks. Together, these learning methods
allow machine learning to adapt to a variety of climate data challenges, enhancing pre-
dictive accuracy and pattern recognition.

4.5 Further Reading

� Python data science book: https://jakevdp.github.io/PythonDataScienceH

andbook/

� Time series analysis: https://r-statistics.co/Time-Series-Analysis-Wit

h-R.html

� 30x30 goal: https://www.campaignfornature.org/Background

� Spatial analysis and geostatistics

– L. Anselin, G. Morrison, A. Li, K. Acosta (2023). Hands-On Spatial Data
Science with R. GitHub eBook (Creative Commons Licensed). https://sp

atialanalysis.github.io/handsonspatialdata/index.html.

– https://www.oreilly.com/library/view/applied-geospatial-data/97

81803238128/

� Machine learning and predictive modeling

– James, Witten, Hastie and Tibshirani (and Taylor). An Introduction to Sta-
tistical Learning with Applications in R or Python. PDF is available online:
https://www.statlearning.com/.
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– Boehmke, B., & Greenwell, B. (2020). Hands-On Machine Learning with R.
CRC Press. Freely available from https://bradleyboehmke.github.io/H

OML/.

23



5 Climate Models

Modeling is used in climate science to simulate Earth’s climate system to understand its
past and how it is likely to evolve in the future, especially in the context of anthropogenic
climate change. This helps provide not only a scientific basis for the understanding of
climate change but also to guide policies and action to mitigate global warming and assess
the impacts of climate change across the globe. While we have real-world observations
of Earth’s climate conditions before significant human activity and afterwards, we must
rely on climate models to show what Earth’s climate would be like if not affected by
human activity to prove that the observed climate change is indeed caused by humans.

For example, the Intergovernmental Panel on Climate Change (IPCC) uses climate
models to create their reports on the different climate scenarios based on greenhouse gas
emissions and atmospheric concentrations and what climate action is needed to mitigate
the damage caused. These simulations are useful for informing policies on what action
should be taken and to determine if current action is enough for achieving the desired
outcomes.

Figure 11: Projected scenarios for global warming according to greenhouse gas emissions
(Source: IPCC).

5.1 Types of Climate Models

Climate models are essentially computer programs that simulate the interactions between
different components of Earth’s climate system using mathematical equations based on
basic physical principles, such as the conservation of mass and energy, to approximate
the dynamics. There are different kinds of climate models with varying use cases and
levels of complexity, the simplest one being a one-dimensional radiative-convective or
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energy balance climate model. This model calculates the flow of energy between different
components of a defined climate system to quantify the radiative balance of the Earth
and the resulting radiative forcing (also called climate forcing).

Figure 12: A diagram of a one-dimensional energy balance model (Source: Shodor
Education Foundation).

There are also general circulation models (GCMs), sometimes called global climate
models, that approximate the physical dynamics between many parts of the Earth cli-
mate system in three dimensions, such as the atmosphere, oceans, land surface, and ice.
These models are the ones often used by the IPCC and other organizations when study-
ing and discussing anthropogenic climate change. GCMs are probabilistic, meaning they
calculate the statistics of weather pattern trends over an extended period of time and
the probability that atmospheric or surface conditions will be in a certain range of values
at the simulated time(s) for each variable.

Traditionally, this is calculated on a grid of cells representing a surface area of a
region of (or whole) Earth, such as a 100 x 100 km square per cell. This determines the
resolution of the model and to make the cell smaller (higher resolution) requires more
computing power in a non-linear fashion. A size of about 10 km squared is considered
high-resolution, but even that is not nearly small enough to explicitly model important
atmospheric phenomena, such as clouds and precipitation. Therefore, approximations
called parameterizations are used to simulate the atmospheric effects of these phenomena.
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These parameterizations are not perfectly able to capture the nuances of these small-scale
atmospheric phenomena and so conditions such as deep convection (storm formation)
are not modeled exactly like observed in the real world.

Figure 13: Climate model schematic showing the parameterized physical processes and
3D grid (Source: US DOC and NOAA).

To initialize the model, real-world climate data is assimilated into it to provide
the initial conditions from which it will progressively calculate values (for a forecast)
iterating over a set interval of time using physical equations. The quality of the data is
essential because even a small difference from the real-world conditions at the beginning
can result in significant differences over a long-scale simulation. This uncertainty about
the exact conditions arises from the fact that there are so many variables to account for
in how the climate will evolve over time that even small changes can accumulate and
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result in significant differences over a long period of time. This uncertainty has led to the
popularity of ensemble forecasting, where multiple models are initialized with the same
conditions or multiple runs are conducted with slightly different conditions to determine
an average probability of what forecasted conditions will be.

Figure 14: The output of an ensemble of climate models compared with real-world
observations. The red line indicates the average of all the models and tends to be more
accurate than any single mode (Amos, 2021).

Because iterating over the data is computationally expensive, these models are typ-
ically run on supercomputers, especially those that are higher resolution. For example,
doubling the horizontal resolution of a model requires 8 times as much computing power
and if vertical resolution is included, that balloons to 16 times as much. Therefore, cli-
mate (and weather) models are often run on some of the most powerful supercomputers
available.

5.2 Examples of Models

Climate data can also be used for models that make more short-term forecasts, such as
flood or storm surge prediction models. One example is the National Hurricane Center’s
“Sea, Lake, and Overland Surges from Hurricanes” (SLOSH) model used by NOAA
for over 3 decades to simulate storm surge from tropical cyclones. Storm surge is an
increasingly important issue as sea level rise and more frequent storms lead to worse
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flooding. The model processes historical climate data and data on flooding and storm
surges to predict the risk of storm surge due to a tropical cyclone across the US.

Figure 15: Screenshot of the interactive map at
https://www.nhc.noaa.gov/nationalsurge/.

For anthropogenic climate change specifically, an open-source model by Project
Drawdown available on GitHub is used to calculate the percentage contributions to
greenhouse gas emissions by sector: electricity, food and agriculture, industry, trans-
port, buildings, and other energy. This provides a data-driven basis for the list of
feasible solutions to the impacts of anthropogenic greenhouse gas sources on the Project
Drawdown website. As described on the organization’s website, to evaluate a proposed
solution, a review of relevant scientific literature is conducted and that information used
to simulate the amount of greenhouse gas reduction, implementation costs, and opera-
tion savings calculated by their models. These findings are then reviewed and if they
meet the standards for inclusion, they are added to the solution library. The documen-
tation about the model is available on Project Drawdown’s GitHub website for those
who are interested in running it.

Another model that can be downloaded and run is the University Corporation for
Atmospheric Research (UCAR) Community Earth System Model (CESM), a fully cou-
pled global climate model that includes atmosphere, land surface, ocean, and sea ice
components. There is a free asynchronous distance learning course available on UCAR
MetEd on how to run the model, modify components, and analyze the outputs which
is linked in the Further Reading section. The user should have some familiarity with
unix-like operating systems, Python libraries, and compiling code, specifically Fortran
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Figure 16: The Project Drawdown model is used to give estimates of gigatons CO2
equivalent reduced/sequestered (2020–2050) for each solution listed in their solutions
library for two scenarios depending on how much action is taken to reduce greenhouse
gas emissions. Screenshot from https://drawdown.org/solutions/table-of-solutions.

and C. The model download page links to a quickstart guide which details the download
and compiling process further. The CESM also has an active community involved in its
use and development through working groups and meetings which are a great resource
for advancing one’s knowledge and understanding of climate modeling as well as ensuring
that the model is kept up-to-date.

5.3 Examples of Data Sources

Climate data is important for understanding how Earth’s climate was in the past and how
it will evolve in the future, especially considering the significance of climate change. Data
from natural sources and human observations of weather patterns over long periods of
time are instrumental in informing climate scientists about historical trends in important
variables such as surface temperature, atmospheric concentrations of greenhouse gasses,
and precipitation patterns.

There are many natural sources of historical climate data including ice cores, tree
rings, and ocean and lake sediments. The unique ability of these records to extend far
back through time makes them invaluable for paleoclimatological uses. Paleoclimatology,
the study of Earth’s climate thousands or millions of years ago, is important because
it gives perspective to the current climate change we are experiencing right now and
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provides insights into past and current drivers of different eras in Earth’s climate. This
data can also be used to validate model outputs in tandem with satellite observations of
atmospheric phenomena and contemporary trends in climate, such as to better model
the influence of the stratosphere on the North Atlantic Oscillation.

Figure 17: Lowered temperatures in the Northern Hemisphere due to the Maunder
Minimum (Source: NASA).

A great resource for paleoclimatological data is NOAA’s webpage for natural records
of past climate, featuring datasets from an wide set of natural sources spanning an ex-
tensive timescale. NOAA also has a climate data primer webpage, linked in the “Further
Reading” section, that provides several tools for climate data analysis and visualization
along with estimated difficulty ratings and explanations of what each is used for and
how.

In more recent times, observations by humans of weather conditions have also become
important for climate science. There are many sources of this kind of data online, though
because of its significantly shorter timescale compared to paleoclimatological data, this
data is often used for conducting analyses focused on climate change and human activity
in the industrial or contemporary era. Here are a few examples of sources of observational
climate data:

� National Climatic Data Center Climate Data Online: https://www.ncei.noaa.
gov/cdo-web/

� Climate Toolbox Historical Climate Tracker: https://climatetoolbox.org/too
l/Historical-Climate-Tracker

� NCEI Global Historical Climatology Network: https://www.ncei.noaa.gov/pr
oducts/land-based-station/global-historical-climatology-network-dai

ly

� World Bank Group Climate Change Knowledge Portal: https://climateknowl

edgeportal.worldbank.org
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5.4 Further Reading

� Types of Models

– IPCC AR6 Model List: https://psl.noaa.gov/ipcc/cmip6/models.html

– IPCC 2007 Model Comparison: https://www.ipcc.ch/site/assets/uplo
ads/2018/02/ar4-wg1-chapter8-1.pdf

– IPCC Sixth Assessment Report, Chapter 7: https://www.ipcc.ch/report
/ar6/wg1/chapter/chapter-7/

� Examples of Models

– National Hurricane Center’s SLOSH model: https://www.nhc.noaa.gov/n
ationalsurge

– Project Drawdown GitHub: https://github.com/ProjectDrawdown

– Project Drawdown methodology page: https://drawdown.org/solutions

/methods

– Project Drawdown model documentation: https://projectdrawdown.gith
ub.io/solutions/index.html

– UCAR’s CESM: https://www.cesm.ucar.edu/

– CESM model releases: https://www.cesm.ucar.edu/models/releases

– CESM on GitHub: https://github.com/ESCOMP/CESM

– CESM MetEd distance learning course: https://www.meted.ucar.edu/edu
cation_training/lesson/1363

� UCAR guide to climate data analysis tools and methods: https://climatedat

aguide.ucar.edu/climate-tools

� Exascale computation: https://sab.noaa.gov/wp-content/uploads/2021/08

/ExascaleWeatherClimateNOAAComputationsEKalnay_Final-1.pdf

� NOAA Climate Data Primer: https://www.climate.gov/maps-data/climat

e-data-primer/visualizing-climate-data
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